Landscape-scale geographic variations in microbial biomass and enzyme-labile phosphorus in manure-amended Hapludults
2014
Long-term nutrient management practices have lasting effects on the geographic distribution of soil microorganisms, loci of enhanced activity, and non-mobile nutrients such as phosphorus (P) to ultimately influence nutrient use efficiency by crops and edge-of-field losses. We determined the distribution of soil microbial biomass, phosphomonoesterases' activity, and P forms in a 10-ha no-till field that received annual additions of dairy manure at 0, 15, and 30 kg P ha−1 at the field scale for 16 consecutive years. The spatial structure of soil microbial indices and extractable P fractions were characterized based on their semivariance distributions for each manure treatment. The buildup in soil P occurred, although replacement was done at a crop removal rate. Manure additions resulted in overall mean increases in total labile P of 73 % and 156 % and alterations in the soil microbial ecosystem that depended on manure inorganic-to-enzyme-labile P composition in soils treated with 15 and 30 kg P ha−1, respectively. Distinct clusters of phosphate- and enzyme-labile organic P were observed within manure treatments, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced acid phosphomonoesterase activity. The geographic variability highlighted the critical need for improving methods of field-scale application of manure and non-mobile nutrients. In addition, current soil testing methods that depend upon composite representative samples for estimating microbiological parameters linked to nutrient turnover and P requirements for optimal crop production should be modified to include site-specificity in sampling and interpretation approaches.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
8
Citations
NaN
KQI