Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores

2017 
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon–rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    20
    Citations
    NaN
    KQI
    []