Novel cryo-electron tomography structure of Arp2/3 complex in cells reveals mechanisms of branch formation

2020 
The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0[A] resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Our structure indicates a central role for the ArpC3 subunit in stabilizing the active conformation and suggests that in the branch junction relocation of the ArpC5 N-terminus and the C-terminal tail of Arp3 is important to fix Arp2 and Arp3 in an actin dimer-like conformation. Notably, our model of the branch junction in cells significantly differs from the previous in vitro branch junction model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []