Coherent Phase Control of Internal Conversion in Pyrazine

2014 
Shaped ultrafast laser pulses were used to study and control the ionization dynamics of electronically excited pyrazine in a pump and probe experiment. For pump pulses created without feedback from the product signal, the ion growth curve (the parent ion signal as a function of pump/probe delay) was described quantitatively by the classical rate equations for internal conversion of the $S_2$ and $S_1$ states. Very different, non-classical behavior was observed when a genetic algorithm (GA) was used to minimize the ion signal at some pre-determined target time, T. Two qualitatively different control mechanisms were identified for early (T$ 1.5$ ps) target times. In the former case, the ion signal was largely suppressed for $t 1.5$ ps the ion growth curve followed the classical rate equations for $t
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []