UCN‐01 (7‐Hydoxystaurosporine) Inhibits in vivo Growth of Human Cancer Cells through Selective Perturbation of G1 Phase Checkpoint Machinery

2001 
Mechanisms underlying tumor sensitivity to the antitumor agent UCN-01 (7-hydroxystaurosporine) were examined in the nude mouse model using three human tumor xenografts, two pancreatic cancers (PAN-3-JCK and CRL 1420) and a breast cancer (MX-1). UCN-01 antitumor activity was evaluated in terms of relative tumor weights in treated and untreated mice bearing the tumor xenografts. The activity of cyclin-dependent kinase 2 (CDK2), levels of p21 and p27 proteins, pRb status and cell cycle were evaluated. Induction of p21 and apoptosis were also assessed immuno-histochemically in CRL 1420. UCN-01 was administered intraperitoneally at a dose of either 5 or 10 mg/kg daily for 5 days followed by a further 5 injections after an interval of 2 days. UCN-01 significantly suppressed the growth of both pancreatic cancers, but was ineffective against MX-1. p21 protein expression was markedly induced in the UCN-01-sensitive pancreatic carcinoma xenografts at both doses, but p21 induction was only evident in the UCN-01-resistant MX-1 at 10 mg/kg. MX-1 exhibited CDK2 activity that was 6-fold higher than that of pancreatic cancer strains, which may explain the resistance of MX-1 to UCN-01 despite the induction of p21 at the dose of 10 mg/kg. The UCN-01-sensitive tumors exhibited G1 arrest and increased levels of apoptosis, changes not observed in resistant MX-1. In conclusion, it appears that a determining factor of in vivo UCN-01 sensitivity involves the balance of CDK2 kinase activity and p21 protein induction, resulting in augmented pRb phosphorylation, G1 cell cycle arrest and apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    21
    Citations
    NaN
    KQI
    []