Distribution of surface carbon monoxide over the Indian subcontinent: Investigation of source contributions using WRF-Chem

2020 
Abstract This study investigates fractional contribution of different carbon monoxide sources over the Indian Subcontinent at the surface in 2015 using a tagged tracer approach in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Model simulations are evaluated with respect to in-situ and satellite observations. The simulated CO levels reproduced in-situ observations in Pune, Anantapur, Udaipur, Ahmedabad, and Chennai reasonably well with mean bias ranging from −89.9 to 87.0 ppbv and RMSE ranging from 28 to 40% but a poor model performance was noticed in Hyderabad, Jabalpur, and Kanpur with larger mean bias (−259.0–190.9 ppbv) and RMSE (45–96%). Simulated CO concentrations are also compared with CO retrieved by MOPITT at 800 hPa and 200 hPa. At 800 hPa (200 hPa), the annual average WRF-Chem CO varies from 195 ± 69 to 224 ± 93 ppbv (102 ± 25 to 136 ± 21 ppbv) while MOPITT CO varies from 103 ± 26 to 114 ± 29 ppbv (103 ± 30 to 134 ± 33) over different Indian sub-regions. Over most of the regions, good correlation (coefficient of correlation > 0.7) is observed between simulated and satellite observed CO with mean bias of 92–118 ppbv at 800 hPa and −4 to 3 ppbv at 200 hPa. Over the total Indian region, we find the highest contribution from anthropogenic emissions (CO-ANT) and inflow into the model domain from domain boundaries (CO-BACK) with 45–46% contribution each and very small contribution (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    4
    Citations
    NaN
    KQI
    []