Quantifying Secondary Structure Changes in Calmodulin Using 2D-IR Spectroscopy

2017 
Revealing the details of biomolecular processes in solution needs tools that can monitor structural dynamics over a range of time and length scales. We assess the ability of 2D-IR spectroscopy in combination with multivariate data analysis to quantify changes in secondary structure of the multifunctional calcium-binding messenger protein Calmodulin (CaM) as a function of temperature and Ca2+ concentration. Our approach produced quantitative agreement with circular dichroism (CD) spectroscopy in detecting the domain melting transitions of Ca2+-free (apo) CaM (reduction in α-helix structure by 13% (CD) and 15% (2D)). 2D-IR also allows accurate differentiation between melting transitions and generic heating effects observed in the more thermally stable Ca2+-bound (holo) CaM. The functionally relevant random-coil-α-helix transition associated with Ca2+ uptake that involves just 7–8 out of a total of 148 amino acid residues was clearly detected. Temperature-dependent Molecular Dynamics (MD) simulations show th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    19
    Citations
    NaN
    KQI
    []