Influence of bore fluid composition on the physiochemical properties and performance of hollow fiber membranes for ultrafiltration.

2020 
Abstract Porous hollow fiber polysulfone (PSf) membranes were fabricated via a phase-inversion process and their performance during ultrafiltration (UF) was evaluated. The effects of the composition and concentration (0–50%) of different bore fluid mixtures, including N-methyl-2-pyrrolidone (NMP)/water, glycerol (G)/water, and ethylene glycol (EG)/water (in comparison with pure deionized water), on the structure, physicochemical properties, and performance of the fabricated membranes was investigated. Using these various bore fluid mixtures altered the thermodynamic and kinetic properties of the phase inversion system, and changed the morphology and structure of the fabricated membranes, especially on the lumen side. Increasing concentrations of NMP, G, and EG in the bore fluid resulted in increased pore size, porosity, and hydrophilicity. These bore fluid mixtures exhibited a strong influence on the perm-selectivity of the as-spun hollow fiber membranes. The membrane fabricated using 50% NMP/water as the bore fluid mixture exhibited the highest water flux of 166.98 LMH with a bovine serum albumin rejection rate of more than 97%. Overall, this study introduces an easy and effective way to control the structure of the membrane through bore fluid modification and shows how the inner skin layer properties can have a remarkable effect on water permeance, even in the out-in filtration test.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []