Backstepping Control of an Unmanned Helicopter Subjected to External Disturbance and Model Uncertainty

2021 
A helicopter is a highly nonlinear system. Its mathematical model is difficult to establish accurately, especially the complicated flapping dynamics. In addition, the forces and moments exerted on the fuselage are very vulnerable to external disturbances like wind gust when flying in the outdoor environment. This paper proposes a composite control scheme which consists of a nonlinear backstepping controller and an extended state observer (ESO) to handle the above problems. The stability of the closed-loop system can be guaranteed based on Lyapunov theory. The external disturbances and model nonlinearities are treated as a lumped disturbance. Meanwhile, the ESO is employed to compensate the influence by estimating the lumped disturbance in real-time. Numerical simulation results are presented to demonstrate that the algorithm can achieve accurate and agile attitude tracking under the external wind gust disturbances even with model uncertainties. When coming to the flight test, a block dropping device was designed to generate a quantifiable and replicable disturbance, and the experimental results indicate that the algorithm introduced above can reject the external disturbance rapidly and track the given attitude command precisely.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []