New lower bounds for the maximal determinant problem
2003
We report new world records for the maximal determinant of an n-by-n matrix with entries +/-1. Using various techniques, we beat existing records for n=22, 23, 27, 29, 31, 33, 34, 35, 39, 45, 47, 53, 63, 69, 73, 77, 79, 93, and 95, and we present the record-breaking matrices here. We conjecture that our n=22 value attains the globally maximizing determinant in its dimension. We also tabulate new records for n=67, 75, 83, 87, 91 and 99, dimensions for which no previous claims have been made. The relevant matrices in all these dimensions, along with other pertinent information, are posted at this http URL \.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
5
References
4
Citations
NaN
KQI