Infrared Absorption by Granular Metals

1990 
The infrared properties of granular metals and superconductors are qualitatively in accord with effective medium ideas, with insulating behavior below a percolation transition and metallic response above. An exception is the far-infrared absorption at low metallic concentrations, which is much stronger than theoretical predictions. Measurements of superconductors and of normal metals in different hosts suggest that this absorption is predominately electric dipole rather than the magnetic dipole (eddy current) absorption which is expected to be the dominant low-frequency loss in highly conducting particles. Measurements of clustered and non-clustered samples suggest that the strong far-infrared absorption does not arise from the clustering together of the individual metallic particles, although clustering does lead to about a tenfold increase in absorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    5
    Citations
    NaN
    KQI
    []