Surface Plasmon Resonant Gold-Palladium Bimetallic Nanoparticles for Promoting Catalytic Oxidation

2019 
Colloidal gold-palladium (Au-Pd) bimetallic nanoparticles were used as catalysts to study the ethanol (EtOH) photo-oxidation cycle, with an emphasis towards driving carbon-carbon (C-C) bond cleavage at low temperatures. Au-Pd bimetallic alloy and core-shell nanoparticles were prepared to synergistically couple a plasmonic absorber (Au) with a catalytic metal (Pd) with composite optical and catalytic properties tailored towards promoting photocatalytic oxidation. Catalysts utilizing metals that exhibit localized surface plasmon resonance (SPR) can be harnessed for light-driven enhancement for small molecule oxidation via augmented photocarrier generation/separation and photothermal conversion. The coupling of Au to Pd in an alloy or core-shell nanostructure maintains SPR-induced charge separation, mitigates the poisoning effects on Pd, and allows for improved EtOH oxidation. The Au-Pd nanoparticles were coupled to semiconducting titanium dioxide photocatalysts to probe their effects on plasmonically-assisted photocatalytic oxidation of EtOH. Complete oxidation of EtOH to CO 2 under solar simulated-light irradiation was confirmed by monitoring the yield of gaseous products. Bimetallics provide a pathway for driving desired photocatalytic and photoelectrochemical reactions with superior catalytic activity and selectivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []