Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF

2013 
Simultaneous silencing of multiple up-regulated genes is an attractive and viable strategy to treat many incurable diseases including cancer. Herein we used dual gene targeted siRNA (DGT siRNA) conjugate composed of NET-1 and VEGF siRNA sequences in the same backbone could inhibit growth and angiogenesis HCC. DGT siRNA showed a further down regulation on VEGF mRNA and protein levels compared with NET-1 siRNA or VEGF siRNA, but not on NET-1 expression. It also exhibited greater suppression on proliferation and trigger of apoptosis in HepG2 cells than NET-1 siRNA or VEGF siRNA; this could be explained by the significant down regulation of cyclin D1 and Bcl-2. A lower level of ANG2 mRNA and protein was detected in HUVEC cultured with supernatant of HepG2 cells treated with DGT siRNA than that of VEGF siRNA or NET-1 siRNA, resulting in much more inhibited angiogenesis of HUVEC. Tumor growth was inhibited and microvessel density dropped in the xenograft tumor models compared to the untreated controls. NET-1 and VEGF silencing play a key role in inhibiting hepatocellular cell proliferation, promoting apoptosis, and reducing angiogenesis. Simultaneous silencing of NET-1 and VEGF using DGT siRNA construct may provide an advantageous alternative in development of therapeutics for Hepatocellular carcinoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    21
    Citations
    NaN
    KQI
    []