Use of a Sindbis virus DNA-based expression vector for induction of protective immunity against pseudorabies virus in pigs

2003 
Abstract Injection of plasmid DNA encoding pseudorabies virus (PRV) glycoproteins into pig muscle has been shown to result in protective immunity against lethal infection. Nevertheless, such DNA vaccines are still less efficient than some attenuated or killed live vaccines. One way to increase DNA vaccine efficacy is to improve the vectorisation system at the molecular level, thereby enhancing the rate of in vivo-produced immunogen protein and consequently specific acquired immunity. The present study compared the effectiveness of the protein expression system depending on Sindbis virus (SIN) replicase [J. Virol. 70 (1996) 508] with that of more classical pcDNA3 plasmid. Pigs were vaccinated twice at 3-week interval with a mixture of three pcDNA3 plasmids expressing gB, gC and gD (designated as PRV-pcDNA3) or a mixture of three SIN plasmids expressing the same glycoproteins (PRV-pSINCP), and were challenged with a highly virulent PRV strain. The two DNA vaccines induced PRV-specific T cell-mediated immune response characterized by very low levels of IFN-γ mRNA in PBMC after in vitro antigen-specific stimulation. Very low levels of neutralizing antibodies (NAb) were also obtained in sera following DNA injection(s). A second DNA injection did not boost immune responses. After a lethal challenge, high levels of IFN-γ mRNA and high NAb response were induced in all DNA-vaccinated pigs, regardless of the vector used. Therefore, the two eukaryotic expression systems showed comparable efficacy in inducing antiviral immunity and clinical protection against PRV in pigs. This suggests that SIN DNA-based vector immunizing potential may differ according to antigen and/or host.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    12
    Citations
    NaN
    KQI
    []