Large scale data based audio scene classification
2018
Artificial Intelligence and Machine learning has been used by many research groups for processing large scale data known as big data. Machine learning techniques to handle large scale complex datasets are expensive to process computation. Apache Spark framework called spark MLlib is becoming a popular platform for handling big data analysis and it is used for many machine learning problems such as classification, regression and clustering. In this work, Apache Spark and the advanced machine learning architecture of a Deep Multilayer Perceptron (MLP), is proposed for Audio Scene Classification. Log Mel band features are used to represent the characteristics of the input audio scenes. The parameters of the DNN are set according to the DNN baseline of DCASE 2017 challenge. The system is evaluated with TUT dataset (2017) and the result is compared with the baseline provided.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
1
Citations
NaN
KQI