Oxygen vacancy related distortions in rutile TiO_2 nanoparticles: a combined experimental and theoretical study
2016
The effects of doubly ionized oxygen vacancies [(V_O)ˆ(2+)]on the electronic structure and charge distribution in rutile TiO_2 are studied by combining first-principles calculations based on density functional theory and experimental results from x-ray photoelectron and x-ray absorption measurements carried out in synchrotron facilities on rutile TiO_2 nanoparticles. The generalized gradient approximation of the Perdew-Burke-Ernzerhof functional has demonstrated its suitability for the analysis of the [(V_O)ˆ(2+)]defects in rutile TiO_2. It has been found that the presence of empty electronic states at the conduction band shifted 1 eV from t_(2g) and e_(g) states can be associated with local distortions induced by [(V_O)ˆ(2+)]defects, in good agreement with Gauss-Lorentzian band deconvolution of experimental O K-edge spectra. The asymmetry of t(2g) and e(g) bands at the O-K edge has been associated with [(V_O)ˆ(2+)], which can enrich the understanding of studies where the presence of these defects plays a key role, as in the case of doped TiO_2.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
38
Citations
NaN
KQI