Theory, Design, and Verification of Dual-Circularly-Polarized Dual-Beam Arrays with Independent Control of Polarization: A Generalization of Sequential Rotation Arrays

2020 
In this article, the theory, design, and validation of planar array antennas capable of producing dual-circularly-polarized (dual-CP) dual-beam radiation with a single feeding network are reported. Importantly, the properties of the formed CP beams with different handedness can be independently controlled. Such a capability is achieved by exploiting both the in-plane rotation-induced Berry phase and excitation phase for all the linearly polarized array elements, which can be regarded as a generalization of the well-known sequential rotation arrays. Microstrip patch arrays with such single-feed dual-CP dual-beam functionalities can be synthesized through a straightforward analytical approach that accurately predicts the radiation patterns for both right- and left-handed CP beams. The proposed technique and design methodology were verified by two proof-of-concept microstrip arrays consisting of $8 \times 8$ linearly polarized circular patch elements operating in the $K$ -band, one with uniform excitation amplitudes and the other with tapered excitations for sidelobe suppression. Both arrays were fabricated and measured, experimentally achieving a joint $S_{11} dB, axial ratio < 3 dB, and 3 dB gain bandwidth of more than 22.5%/20.0% and 16.7%/15.8%, respectively, for the right- and left-handed CP beams. Within this broad operational band, the beam squinting is on average within ±3°. The proposed dual-CP dual-beam arrays have fully planarized structures, low profiles, wide operational bandwidths, and high polarization purity, making them useful candidates for applications including satellite communications, point-to-multipoint communications, and so on.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []