Removal of angular momentum by strong magnetic field stresses in advective accretion flows around black holes

2016 
We show that the removal of angular momentum is possible in the presence of large scale magnetic stresses, arisen by fields much stronger than that required for magnetorotational instability, in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady-state, in the complete absence of alpha-viscosity. The efficiency of such angular momentum transfer via Maxwell stress, with the field well below its equipartition value, could be equivalent to that of alpha-viscosity, arisen via Reynolds stress, with $\alpha=0.01-0.08$. We find in our simpler vertically averaged advective disk model that stronger the magnetic field and/or larger the vertical-gradient of azimuthal component of magnetic field, stronger the rate of angular momentum transfer is, which in turn may lead to a faster rate of outflowing matter, which has important implications to describe the hard spectral states of black hole sources. When the generic origin of alpha-viscosity is still being explored, mechanism of efficient angular momentum transfer via magnetic stresses alone is very interesting.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []