Ultrastructural study of the permeability of in-vitro and ex-vivo human models of human arachnoid granulation CSF outflow pathway

2007 
Background In communicating hydrocephalus and also idiopathic intracranial hypertension, disturbed CSF dynamics may result from an increased resistance to CSF outflow at the arachnoid granulations (AGs). To better understand the mechanism of CSF egress, we modelled the outflow of CSF through human AGs using both cell culture (in-vitro) and whole tissue (ex-vivo) perfusion models. Ultrastructural studies were done using microparticles, ruthenium red, and TEM and to elucidate the mechanism of fluid flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []