Application of Directed Evolution and Back-to-Consensus Algorithms to Human Alpha1-Antitrypsin Leads to Diminished Anti-Protease Activity and Augmented Anti-Inflammatory Activities

2020 
Abstract Primarily known as an elastase inhibitor, human alpha1-antitrypsin also exerts anti-inflammatory and immunomodulatory effects, both in vitro and in vivo. While the anti-protease mechanism of alpha1-antitrypsin is attributed to a particular protein domain coined the reactive center loop, anti-inflammatory and immunomodulatory loci within the molecule remain to be identified. In the present study, directed evolution and back-to-consensus algorithms were applied to human alpha1-antitrypsin. Six unique functional candidate sites were identified on the surface of the molecule; in manipulating these sites by point mutations, a recombinant mutant form of alpha1-antitrypsin was produced, depicting a requirement for sites outside the reactive center loop as essential for protease inhibition, and displaying enhanced anti-inflammatory activities. Taken together, outcomes of the present study establish a potential use for directed evolution in advancing our understanding of site-specific protein functions, offering a platform for development of context- and disease-specific alpha1-antitrypsin–based therapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []