GaAs-based tuning fork microresonators: A first step towards a GaAs-based coriolis 3-axis Micro-Vibrating Rate Gyro (GaAs 3-axis μCVG)

2011 
Abstract This paper presents the design of a piezoelectric MEMS Coriolis Vibrating Gyroscope (CVG) based on a single gallium arsenide vibrating structure allowing the measurement of rotation rate along 3 orthogonal sensitive axes. Based on a theoretical and FEM study, we demonstrate that the achieved sensitivities reached for each axis is about 1.6 × 10 −16  C/(°/s). We then demonstrate the feasibility of the realization of simple MEMS structures from C-doped Gallium Arsenide (GaAs) using standard micromachining processes. Finally, we show the fabrication and characterization of GaAs-based tuning fork microresonators as a first step towards a complete 3-axis GaAs MEMS CVG. These resonators show a resonance frequency of 42 350 Hz, a quality factor of 122 000 and a frequency temperature coefficient of 24 ppm/°K, validating the high potential of GaAs as a structural material for 3-axis MEMS CVGs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    9
    Citations
    NaN
    KQI
    []