Herschel/PACS observations of the 69 $\mu m$ band of crystalline olivine around evolved stars

2014 
We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $\mu$m. This wavelength range covers the 69 $\mu$m band of crystalline olivine ($\text{Mg}_{2-2x}\text{Fe}_{(2x)}\text{SiO}_{4}$). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $\dot M \ge 10^{-5}$ M$_\odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $\mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $\mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 $\mu$m band of crystalline olivine ($\text{Mg}_{(2-2x)}\text{Fe}_{(2x)}\text{SiO}_{4}$). The 69 $\mu$m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 $\mu$m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 $\mu$m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    28
    Citations
    NaN
    KQI
    []