Mapping of TNTs using Correlative Cryo-Electron Microscopy Reveals a Novel Structure

2018 
The harmonious orchestration of intercellular communication is essential for multicellular organisms. One mechanism by which cells communicate is through long, actin-rich membranous protrusions, called tunneling nanotubes, that allow for the intercellular transport of various cargoes, including viruses, organelles, and proteins between the cytoplasm of distant cells in vitro and in vivo. Over the last decade, studies have focused on their functional role but information regarding their structure and the differences with other cellular protrusions such as filopodia, is still lacking. Here, we report the structural characterization of tunneling nanotubes using correlative light- and cryo-electron microscopy approaches. We demonstrate their structural identity compared to filopodia by showing that they are comprised of a bundle of functional individual Tunneling Nanotubes containing membrane-bound compartments and allowing organelle transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    5
    Citations
    NaN
    KQI
    []