Sustainable self-powered electro-Fenton degradation using N, S co-doped porous carbon catalyst fabricated with adsorption-pyrolysis-doping strategy

2021 
Abstract A chief challenge of employing self-powered electro-Fenton (EF) system for drastically degrading stubborn pollutants in industrial wastewater is to develop the catalysts with high activity and selectivity in 2e− oxygen reduction and the controllable output power of triboelectric nanogenerator system for collecting ambient available and renewable mechanical energy. Herein, we propose the adsorption-pyrolysis-doping strategy to tailor the content of C−S−C/S−C species and pore sizes of biomass-derived N, S-doped porous carbon catalyst from populus tomentosa to achieve the activity and selectivity of H2O2 electrosynthesis and develop a 3D printed revolving roller-compacted triboelectric nanogenerator (RRC-TENG) as an electric supply with instantaneous short circuit current of 285 μA, open circuit voltage of 500 V, transferred charge of 1.32 μC, and the optimum output power density of 3.00 W m−2, to self-power EF degradation of resistant mixed basic dyes (MB, MO and MG), whose decolorization efficiency is up to 97.8% within 45 min. This work not only realizes the controllable synthesis of high value‐added carbon catalysts via adsorption-pyrolysis-doping strategy, but also advances the EF system with a direction to develop the sustainable self-powered degradation by RRC-TENG replacing the traditional power sources, which makes for massively treating industrial wastewater with high-concentration wastes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    12
    Citations
    NaN
    KQI
    []