Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study

2021 
Abstract One of the major problems faced by historic cities today involves the conservation of heritage buildings. Damage suffered by these buildings can be irreversible and fast-acting, leading to their disappearance over a short period. The study and analysis of the origin of the damage suffered by these buildings have proved themselves to be key to their conservation. Non-destructive testing (NDT) can detect problems indiscernible to the naked eye, thereby preventing potential losses. In this paper, a non-invasive method for the diagnosis of building structures integrated with the Finite Element Method (FEM) was applied to the Tabernacle Chapel; a building included in the northwest wing of the Cathedral of Seville complex. Despite the many interventions carried out to date, the issue of the chapel's deterioration has yet to be entirely solved. This research describes the results of a detailed constructive and structural diagnosis methodology for heritage buildings. The data provided from NDT methods, such as Digital Image Processing (DIP), Infrared Thermography (IRT), Laser Levelling (LL), Ambient Vibration Testing (AVT), and Ground-Penetrating Radar (GPR), has been verified and integrated as boundary conditions in a 3D Finite Element Method (FEM) in order to establish the critical points of the structure, including the failure mechanisms. The results led to the conclusion that the main causes of deterioration involved the settling of the grandstand built in the northwest sector of the building and the effects of the thrusts of the dome on the lateral facades. An integrated implementation methodology of NDT and FEM has enabled accurate knowledge to be ascertained of the principal damage affecting this heritage building.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    9
    Citations
    NaN
    KQI
    []