Local and global bifurcations in 3D piecewise smooth discontinuous maps

2021 
This paper approaches the problem of analyzing the bifurcation phenomena in three-dimensional discontinuous maps, using a piecewise linear approximation in the neighborhood of a border. The existence conditions of periodic orbits are analytically calculated and bifurcations of different periodic orbits are illustrated through numerical simulations. We have illustrated the peculiar features of discontinuous bifurcations involving a stable fixed point, a period-2 cycle, a saddle fixed point, etc. The occurrence of multiple attractor bifurcation and hyperchaos are also demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []