A multivariable adaptive reconfigurable control method applied to the wing damaged aircraft

2013 
Focusing on the abrupt parameter variation of the aircraft dynamic characteristics brought by the wing damage, a multivariable adaptive reconfigurable control method has been studied. First the nonlinear 6DOF model of structural damaged aircraft is presented. The linearization process and the coupling between the longitudinal and lateral dynamics are studied, and the damaged aircraft dynamic model is denoted as a linear form with uncertain variations. And then the Multivariable Model Reference Adaptive Control (M-MRAC) method is introduced to compensate the abrupt variations in the state matrix, control matrix and the constant uncertainty. Finally NASA Generic Transport Model (GTM) is taken as an example and a typical case of left wing tip with 15% damage is considered. Three-channel attitude simulations are presented through comparing with PID control method. The results illustrate that the impact due to the parameter variations are significantly reduced, and the output tracks the desired trajectories rapidly and stably under uncertain damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    4
    Citations
    NaN
    KQI
    []