Calcium currents in osteoblastic cells: Dependence upon cellular growth stage

1994 
Patch clamp physiological techniques were used to characterize the voltage-activated calcium currents (VACC) expressed in the plasma membrane of osteoblastic cells as a function of time in culture and proliferative state of the cell. Osteoblast-enriched preparations were isolated by collagenase digestions of newborn rat calvaria and cultured under different conditions which affected cell proliferation (i.e., low serum in the media to arrest proliferation). VACC were isolated by replacing the intracellular potassium with cesium, and adding 1 μM tetrodotoxin to the bath. Under conditions that favored cell proliferation, low cell density, and media supplemented with 10% fetal calf serum (FCS), a transient calcium current was not expressed until day 3 in culture. There was a statistically significant relationship between the precentage of cells expressing this current and the time in culture. The magnitude of the current significantly increased as days in culture increased. Under the same conditions, the sustained VACC was detected after 7 or 8 days in culture. However, arresting cell proliferation after 2 days in culture by reducing the FCS concentration to 0.01% induced the expression of the sustained VACC the next day. The data suggest that the expression of VACC in the plasma membrane of rat calvarial osteoblasts depends on the time in culture and the state of proliferation of the cells. These results should prove to be valuable in studying the functional significance of VACC in osteoblastic cells and their regulation by various bone regulatory agents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    35
    Citations
    NaN
    KQI
    []