Up-regulation of mitogen activated protein kinases in mdx skeletal muscle following chronic treadmill exercise

2005 
Abstract Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c- Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    50
    Citations
    NaN
    KQI
    []