Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2-CaO-P2O5

2008 
Abstract A new glass formulation, with the molar composition 60% SiO 2 –35% CaO–5% P 2 O 5 , was synthesized using the sol–gel process, for applications as biomaterial in orthopaedic or maxillo facial surgery. Pellets, made of glass powder, were uniaxially compacted and soaked in simulated body fluid (SBF) for up to 7 days at 37 °C to evaluate glass bioactivity. Ionic exchanges at the interface glass-SBF were evaluated by studying evolutions of calcium, phosphorus and silicon concentrations in SBF using ICP-OES. Changes in glass surface, and the formation of crystalline phases were analyzed using XRD, SEM, EDS and FTIR methods. Results form ICP-OES showed a high reactivity of the glass surface with a very high and continuous release of calcium, a limited glass dissolution and an uptake of phosphorous from SBF. Results from both FTIR and XRD analysis indicated that the glass surface was progressively covered by two different phases: CaCO 3 as calcite and a carbonated apatite layer. The formation of these phases, following two different schemas, was observed after 2 h of immersion and confirmed after 7 days. SEM micrographs and EDS analysis demonstrated that the main phase, a carbonated apatite, was present as micro-spheroids and the secondary phase, calcite, was materialized by agglomerates which have diameters up to 10–15 μm. These results are in accordance with a bioactive feature of the glass studied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    85
    Citations
    NaN
    KQI
    []