One-Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acid-Switchable Surface Charge for Overcoming Drug Resistance.

2017 
Multidrug resistance (MDR), is the key reason accounting for the failure of cancer chemotherapy, remains a dramatic challenge for cancer therapy. In this study, the one-step microfluidic fabrication of a rigid pH-sensitive micellar nanocomplex (RPN) with tunable rigidity and acid-switchable surface charge for overcoming MDR by enhancing cellular uptake and lysosome escape is demonstrated. The RPN is composed of a poly(lactic-co-glycolic acid) (PLGA) core and a pH-sensitive copolymer shell, which is of neutral surface charge during blood circulation. Upon internalization of RPN by cancer cells, the pH-responsive shell dissociates inside the acidic lysosomes, while the rigid and positively charged PLGA core improves the lysosomal escape. The cellular uptake and nuclear uptake of doxorubicin (Dox) from Dox-loaded RPN are 1.6 and 2.4 times higher than that from Dox-loaded pH-sensitive micelles (PM) using a Dox-resistant cancer model (MCF-7/ADR, re-designated NCI/ADR-RES) in vitro. Dox-loaded RPN significantly enhances the therapeutic efficacy (92% inhibition of tumor growth) against MCF-7/ADR xenograft tumor in mice, while Dox-loaded PM only inhibits the tumor growth by 36%. RPN avoids the use of complicated synthesis procedure of nanoparticle and the necessary to integrate multiple components, which can facilitate the clinical translation of this novel nanostructure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    48
    Citations
    NaN
    KQI
    []