Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm

2017 
Abstract Recent developments in composting technology enable dairy farms to produce their own bedding from composted manure. This management practice alters the fate of carbon and nitrogen; however, there is little data available documenting how gaseous emissions are impacted. This study measured in-situ emissions of methane (CH 4 ), carbon dioxide (CO 2 ), nitrous oxide (N 2 O), and ammonia (NH 3 ) from an on-farm solid-liquid separation system followed by continuously-turned plug-flow composting over three seasons. Emissions were measured separately from the continuously-turned compost phase, and the compost-storage phase prior to the compost being used for cattle bedding. Active composting had low emissions of N 2 O and CH 4 with most carbon being emitted as CO 2 -C and most N emitted as NH 3 -N. Compost storage had higher CH 4 and N 2 O emissions than the active phase, while NH 3 was emitted at a lower rate, and CO 2 was similar. Overall, combining both the active composting and storage phases, the mean total emissions were 3.9 × 10 −2  g CH 4  kg −1 raw manure (RM), 11.3 g CO 2  kg −1 RM, 2.5 × 10 −4  g N 2 O kg −1 RM, and 0.13 g NH 3 kg −1 RM. Emissions with solid-separation and composting were compared to calculated emissions for a traditional (unseparated) liquid manure storage tank. The total greenhouse gas emissions (CH 4  + N 2 O) from solid separation, composting, compost storage, and separated liquid storage were reduced substantially on a CO 2 -equivalent basis compared to traditional liquid storage. Solid-liquid separation and well-managed composting could mitigate overall greenhouse gas emissions; however, an environmental trade off was that NH 3 was emitted at higher rates from the continuously turned composter than reported values for traditional storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    26
    Citations
    NaN
    KQI
    []