CFD studies on rotational augmentation at the inboard sections of a 10 MW wind turbine rotor

2017 
In the analysis of the aerodynamic performance of wind turbines, the need to account for the effects of rotation is important as engineering models often failed to predict these phenomena. Investigations are carried out by employing an unsteady computational fluid dynamics (CFD) approach on a generic 10 MW AVATAR (Advanced Aerodynamic Tools for Large Rotors) blade. The focus of the studies is the evaluation of the 3D effect characteristics on thick airfoils in the root area. For preliminary studies, 2D simulations of the airfoils constructing the blade and 3D simulations of the turbine near the rated conditions are carried out. The 2D simulations are in good agreement with available measurements within the linear lift region, but the accuracy deteriorates in the post stall region. For the 3D wind turbine rotor results, the prediction is consistent with other CFD computations obtained from the literature. Further calculations of the rotor are conducted at 5 different wind speeds ranging from below to above...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    39
    Citations
    NaN
    KQI
    []