Sensitivity of middle atmospheric temperature and circulation in the UIUC GCM to the treatment of subgrid-scale gravity-wave breaking

2006 
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean-flow forcing due to breaking gravity waves at the sub-grid scale was investigated using the University of Illinois at Urbana-Champaign 40-layer General Circulation Model (GCM). The gravity-wave forcing was represented either by Rayleigh friction or by a detailed parameterization scheme with different sets of parameters. The modeled middle atmospheric temperature and circulation exhibit large sensitivity to the parameterized sub-grid gravity-wave forcing. A large warm bias of up to 50°C was found in the model's summer upper mesosphere and lower thermosphere. This warm bias was caused by the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. Attempts were made to slow down the easterly winds near the mesopause and to reduce the warm bias. The GCM was able to realistically simulate the semi-annual oscillation in the upper stratosphere and lower mesosphere with observational constraints on certain parameter values, but failed to simulate the quasi-biennial oscillation in any of the experiments. Budget analysis indicates that in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are secondary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []