Initial Alignment Error On-Line Identification Based on Adaptive Particle Swarm Optimization Algorithm

2018 
To solve the problem of high accuracy initial alignment of strap-down inertial navigation system (SINS) for ballistic missile, an on-line identification method of initial alignment error based on adaptive particle swarm optimization (PSO) is proposed. Firstly, a complete navigation model of SINS is established to provide the accurate model basis for subsequent numerical optimization calculation. Then setting the initial alignment error as the optimization parameter and regarding the minimum deviation between SINS and GPS output as the objective function, the error parameter optimization model is designed. At the same time, the mutation idea of genetic algorithm (GA) is introduced into the PSO; thus the adaptive PSO is adopted to identify the initial alignment error on-line. The simulation results show that it is feasible to solve the initial alignment error identification problem of SINS by intelligent optimization algorithm. Compared with the standard PSO algorithm and the GA, the adaptive PSO algorithm has the fastest convergence speed and the highest convergence precision, and the initial pitch error and the initial yaw error precision are within and the initial azimuth error precision is within . The navigation accuracy of SINS is improved effectively. Finally, the feasibility of the adaptive PSO algorithm to identify the initial alignment error is further validated based on the test data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    7
    Citations
    NaN
    KQI
    []