A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer

2017 
Understanding pathways of recharge to alluvial aquifers is important for maintaining sustainable access to groundwater resources. Water balance modelling is often used to proportion recharge components and guide sustainable groundwater allocations. However, it is not common practice to use hydrochemical evidence to inform and constrain these models. Here we compare geochemical versus water balance model estimates of artesian discharge into an alluvial aquifer, and demonstrate why multi-tracer geochemical analyses should be used as a critical component of water budget assessments. We selected a site in Australia where the Great Artesian Basin (GAB), the largest artesian basin in the world, discharges into the Lower Namoi Alluvium (LNA), an extensively modelled aquifer, to convey the utility of our approach. Water stable isotopes (ẟ 18 O and ẟ 2 H) and the concentrations of Na + and HCO 3 − suggest a continuum of mixing in the alluvial aquifer between the GAB (artesian component) and surface recharge, whilst isotopic tracers ( 3 H, 14 C and 36 Cl) indicate that the alluvial groundwater is a mixture of groundwaters with residence times of 3 H and ~ 900 ka using 36 Cl methods. In addition, Cl − concentrations provide a means to calculate a percentage estimate of the artesian contribution to the alluvial groundwater. In some locations, an artesian contribution of up to 70 % is evident from the geochemical analyses, contrasting historical water balance modelling estimates of 22 %. Our results show that hydrochemical investigations need to be undertaken as part of developing the conceptual framework of a catchment water balance model, as they can improve our understanding of recharge pathways and better constrain artesian discharge to an alluvial aquifer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    13
    Citations
    NaN
    KQI
    []