Unveiling contextual realities by microscopically entangling a neutron

2019 
The development of qualitatively new measurement capabilities is often a prerequisite for critical scientific and technological advances. The dramatic progress made by modern probe techniques to uncover the microscopic structure of matter is fundamentally rooted in our control of two defining traits of quantum mechanics: discreteness of physical properties and interference phenomena. Magnetic Resonance Imaging, for instance, exploits the fact that protons have spin and can absorb photons at frequencies that depend on the medium to image the anatomy and physiology of living systems. Scattering techniques, in which photons, electrons, protons or neutrons are used as probes, make use of quantum interference to directly image the spatial position of individual atoms, their magnetic structure, or even unveil their concomitant dynamical correlations. None of these probes have so far exploited a unique characteristic of the quantum world: entanglement. Here we introduce a fundamentally new quantum probe, an entangled neutron beam, where individual neutrons can be entangled in spin, trajectory and energy. Its tunable entanglement length from nanometers to microns and energy differences from peV to neV will enable new investigations of microscopic magnetic correlations in systems with strongly entangled phases, such as those believed to emerge in unconventional superconductors. We develop an interferometer to prove entanglement of these distinguishable properties of the neutron beam by observing clear violations of both Clauser-Horne-Shimony-Holt and Mermin contextuality inequalities in the same experimental setup. Our work opens a pathway to a future era of entangled neutron scattering in matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []