Sensing Living Bacteria in Vivo Using d-Alanine-Derived 11C Radiotracers

2020 
Incorporation of d-amino acids into peptidoglycan is a unique metabolic feature of bacteria. Since d-amino acids are not metabolic substrates in most mammalian tissues, this difference can be exploited to detect living bacteria in vivo. Given the prevalence of d-alanine in peptidoglycan muropeptides, as well as its role in several antibiotic mechanisms, we targeted this amino acid for positron emission tomography (PET) radiotracer development. d-[3-11C]Alanine and the dipeptide d-[3-11C]alanyl-d-alanine were synthesized via asymmetric alkylation of glycine-derived Schiff-base precursors with [11C]methyl iodide in the presence of a cinchonidinium phase-transfer catalyst. In cell experiments, both tracers showed accumulation by a wide variety of both Gram-positive and Gram-negative pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. In a mouse model of acute bacterial myositis, d-[3-11C]alanine was accumulated by living microorganisms but was not taken up in areas of sterile inflammation. ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    13
    Citations
    NaN
    KQI
    []