Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs

2013 
Abstract Background aims Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. Methods The “Clean-Room Technology Assessment Technique” (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. Results CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. Conclusions CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    46
    Citations
    NaN
    KQI
    []