Effect of Bowed/Leaned Vane on the Unsteady Aerodynamic Excitation in Transonic Turbine

2019 
To investigate the effect of bowed/leaned vane configurations on the aerodynamic performance and aerodynamic excitation in transonic high-pressure turbine, the full three-dimensional viscous unsteady numerical simulation was performed by solving N-S equations based on SAS SST method. The influence of bowed /leaned vanes on turbine efficiency and efficiency fluctuation was investigated. The action of vane modelling to the overall aerodynamic fluctuation level and the amplitude of each vane passing frequency were analyzed. By comparing instantaneous pressure fluctuation contours in the blade passage with space-time maps, the link of the pressure fluctuation on blade surface with flow distortions was achieved, which can reveal the mechanism of the impact of the vane modelling. As the results suggest, the turbine efficiency is promoted with positively leaned and bowed vane modelling, and the fluctuation of stage turbine efficiency is repressed, which contributes to the smooth running of the turbine stage. The blade aerodynamic excitation on the rotor blade is characterized by the motion of vane trailing edge shock system, and the vane configurations can reduce the fluctuation level on the rotor blade surface effectively. For the positively leaned vane configuration, the aerodynamic excitations at the root and tip region are affected by the impact of the amplitude of the first harmonic, whereas they are reduced with the decrease of the amplitude of the second and higher harmonics at midspan. For the positively bowed vane, aerodynamic excitation is repressed by reducing the amplitude of the third harmonic at the root region, and the first harmonic at the tip region, and the amplitude of each harmonic is reduced at the middle region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []