Replacement of metal in metalloenzymes. A lead-alkaline phosphatase

1976 
Lead ions can interact with calf intestine alkaline phosphatase. Experiments using 203Pb-labeled Pb2+ ions showed that Pb2+ ions bind the native protein in a molar ratio of Pb/protein of 1:5 with moderate inhibition of its biochemical activity. The 4 g-atoms of Zn per mol present in the native enzyme may be removed by dialysis against EDTA. The inactive apoenzyme is capable of incorporating Pb2+ ions in a Pb/protein molar ratio of 2:1, giving a lead-protein complex still enzymatically active also when genetic material, such as nucleotides or DNA, has been used a a substrate. The reconstituted lead-protein is capable of binding Zn2+ ions without any release of the Pb2+ ions and with an increase in the catalytic activity of only 10-15%. The absence of Zn in the inactive apoenzyme as well as in the reconstituted lead-protein, the incorporation of Pb2+ ions in stoichiometric amounts in the apoenzyme, and the weak influence of the Zn2+ ions on the enzymatic assay of the lead-enzyme suggest that lead ions partially reactivate the calf intestine alkaline phosphatase apoenzyme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []