A Novel Highly Selective Cannabinoid CB2 Agonist Reduces in Vitro Growth and TGF-beta Release of Human Glial Cell Tumors

2019 
BACKGROUND: Cannabinoid receptors have been detected in human gliomas and cannabinoids have been proposed as novel drug candidates in the treatment of brain tumors. AIMS: To test the in vitro antitumor activity of COR167, a novel cannabinoid CB2-selective agonist displaying a high binding affinity for human CB2 receptors, on tumor cells isolated from human glioblastoma multiforme and anaplastic astrocytoma. METHODS: Glioma cell cultures were established from two glioblastoma multiforme and two anaplastic astrocytomas. Proliferation was measured in the presence or absence of COR167 with a bromodeoxyuridine (BrdU) cell proliferation ELISA assay. CB2 receptor expression was detected by western blotting. Apoptosis was assessed with phycoerythrin (PE) annexin V flow cytometry kit. TGF-beta 1 and 2 levels were analyzed in culture supernatants with commercial ELISAs. RESULTS: COR167 was found to significantly reduce the proliferation of both glioblastoma and anaplastic astrocytoma in a dose-dependent manner at lower doses than other known, less specific CB2 agonists. This activity is independent of apoptosis and is associated with a significant reduction of TGF-beta 1 and 2 levels in supernatants of glioma cell cultures. CONCLUSION: These findings add to the role of cannabinoid CB2 receptor as a possible pharmacological target to counteract glial tumor growth and encourage further work to explore any other pharmacological effect of this novel CB2 agonist useful in the treatment of human gliomas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    6
    Citations
    NaN
    KQI
    []