Nano-dispersed platinum(0) in organically modified silicate matrices as sustainable catalysts for a regioselective hydrosilylation of alkenes and alkynes

2018 
Nano-dispersed platinum(0) particles stabilized in a range of organically modified silicate (ORMOSIL) matrices are investigated as sustainable catalysts for the hydrosilylation of alkenes and alkynes. In this study, five different siloxane matrices including triethoxysilane (HTEOS), methyltriethoxysilane (MTES), ethyltriethoxysilane (ETES), triethoxyvinylsilane (TEVS) and propyltriethoxysilane (PTES) are investigated, and the distribution of the metal particles in these materials analyzed by transition electron microscopy (TEM). The particles appeared to be generally of a small size, with a diameter of ca. 2–5 nm in each of these catalysts, however the distribution is not equally uniform from one matrix to the other. HTEOS, MTES and ETES that respectively carry a hydrogen, a methyl and an ethyl group on the triethoxysilane moiety, displayed a more uniform distribution, while particles appeared to be more scattered in the remaining matrices. Catalysts with a uniform particles distribution produced higher and consistent yields, while those with poor particles distribution produced lower and almost random yields, suggesting that the uniformity in particle distribution, and by extension the nature of the siloxane matrix, are important for the catalytic properties of these materials. The scope of the reaction was broadened to a range of olefins, with a goal of investigating the tolerability of the reaction toward a number of reactive functional groups, resulting in the preparation of 28 compounds. This catalytic system also enabled the hydrosilylation of a limited number of alkynes under the optimized reaction conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    5
    Citations
    NaN
    KQI
    []