Optical Studies of Electroluminescent Structures from Porous Silicon

1992 
Two components of the electroluminescence (EL) from porous silicon light emitting diode (LED) devices have been observed. A slower component and a faster component have been identified. The slower component has a spectral peak shifted to the red from the corresponding photoluminescence (PL) spectrum. The faster component has a spectral peak well in the infrared (IR). Optical and electrical measurements of these two components are discussed. The temperature dependence of the two EL components are presented and contrasted. Our measurements demonstrate that the two EL components and the PL result from recombination in different parts of the porous silicon structure. As the temperature is reduced below room temperature the slower EL exhibits a decrease in intensity at relatively high temperatures, suggesting a freeze out of electrical carriers due to quantum confinement, resulting in a much reduced electrical excitation of the EL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    4
    Citations
    NaN
    KQI
    []