In-beam gamma-ray and electron spectroscopy of $^{249,251}$Md.

2020 
The odd-$Z$ $^{251}$Md nucleus was studied using combined gamma-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, a new rotational structure has been identified using gamma-gamma coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for the new band, i.e. the ground-state band. A physical background that dominates the electron spectrum with an intensity of $\simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a new method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using gamma-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $\Delta l = \Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. New Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarity between these bands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    1
    Citations
    NaN
    KQI
    []