Nucleotide-free kinesin hydrolyzes ATP with burst kinetics.

1989 
Abstract Bovine brain kinesin binds ADP tightly and contains a stoichiometric amount of ADP at its active site when isolated in the presence of free Mg2+ (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318). EDTA in excess of Mg2+ weakens ADP binding and nucleotide-free kinesin can be prepared by gel filtration with excess EDTA. On addition of ATP, this nucleotide-free enzyme catalyzes the rapid hydrolysis of a stoichiometric amount of ATP in a burst phase followed by much slower continued ATP hydrolysis limited by the release of ADP from the active site. This burst reaction is evident both by formation of [32P]Pi from [gamma-32P]ATP and by formation of [alpha-32P]ADP from [alpha-32P]ATP. At 1.1 nM kinesin active sites, the observed rate of the burst phase increases linearly with ATP over the 1-20 nM range yielding a bimolecular rate of net ATP binding and hydrolysis of 2.5 microM-1 s-1. The intercept at zero ATP is 0.008 s-1 which equals the ADP release rate at 0.008-0.009 s-1. This predicts a Km for ATP of approximately 3.5 nM and measurements of the dependence on ATP concentration of the steady state rate and amount of bound ADP are consistent with a Km of this magnitude.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    35
    Citations
    NaN
    KQI
    []