Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy

2020 
Photodynamic therapy (PDT) has received an increasing attention in disease treatment due to its minimally-invasive, selective destruction with combination of a photosensitizer (PS), light, and oxygen. However, the limited cytotoxic singlet oxygen (1O2) generation and thin tissue penetrability have been two major barriers in the conventional PDT, hindering its further development and clinical use. Recently, fluorescence resonance energy transfer-based drug delivery systems (FRET-DDSs), indirectly activating PS drugs by a donor fluorophore, have been successfully applied to alleviate these issues. The transfer of excitation energy from donors to PS drugs can significantly boost its light harvesting and extend the field of light source, which dramatically improves its production efficiency of singlet oxygen, thus leading to highly efficient and deep-tissue-penetrable PDT for the treatment of bacteria, cancer and other diseases. In this Review, we give the first-known overview of recent advances in FRET-DDSs for the enhanced PDT. In particular, dependent on the excitation energy mechanism in the FRET process, six major types of FRET-DDSs, including one-photon, two-photon, upconversion, auto-fluorescence, X-ray, and Cerenkov excited FRET-DDSs in PDT applications are summarized in detail. Furthermore, future research directions and perspectives in this emerging field are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    174
    References
    15
    Citations
    NaN
    KQI
    []