Ultrastructural organization of actin filaments in neurosecretory axons of the rat

1981 
The ultrastructural organization of actin filaments was studied in the neurohypophysial system of the rat after heavy meromyosin (HMM) labeling. This structural pattern is characterized by (1) a straight arrangement of the filaments parallel to the axonal axis in the proximal nondilated parts of axons, (2) a central location within axonal dilatations, and (3) a higher concentration within axonal endings where the filaments form a complex three-dimensional network. The relationships of the filaments to other axonal structures and organelles was further studied by use of electron microscopic stereoscopy. The actin filaments frequently appear anchored to the axolemma with either polar arrangements of the arrowhead decoration (i) at structurally undifferentiated sites, and (ii) more particularly within perivascular endings, at sites with electron-dense thickenings. In all axonal divisions actin filaments are also found to bind to filamentous material surrounding the microtubules and to various organelles. Within the terminal portions of the axons actin filaments exhibit close relationships to neurosecretory granules and to the numerous smooth microvesicles found in this region. Such preferential relationships are particularly observed both in axon terminals and in pituicytes, with coated vesicles frequently binding actin filaments. In water-deprived rats, the concentration of actin filaments is conspicuously increased along the axons and more clearly in the axonal swellings and endings, where they form a more complex and interconnected network. These data are discussed in the light of a possible involvement of contractile proteins in the mechanisms of axonal transport and terminal release of neurosecretory products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    21
    Citations
    NaN
    KQI
    []