Vibration and Acoustic Emission of Linear-Guideway Type Recirculating Ball Bearings With a Millimeter-Sized Artificial Defect in the Carriage

2010 
This paper deals with vibrations and acoustic emissions (AEs) of linear-guideway type recirculating ball bearings with a millimeter-sized artificial defect in the carriage. The vibration and AE of one normal bearing without a defect (Type N), and six defective bearings (Types D1-D6) were measured using a linear velocity of 1 m/s. The defects in the bearings range from 1.87 mm to 6.77 mm in length, 2.45 mm to 3.80 mm in width, and 23.3 μm to 68.0 μm in depth. The experimental results show that the pulse amplitudes of the vibrations and AE (both the peak-to-peak and RMS values) of the defective bearings have a tendency to be greater than those of the normal bearing. Both the measured vibration and AE components over 30 kHz increased in the carriages with defects. To explain these increases in the defective bearings, a collision model with balls and one defect in the carriage is presented. That collision model shows that the increases in both the vibrations and AE of the defective bearings are caused by increases in the defect angle. A reasonable correlation exists between the presented collision model and the measured vibrations or AE of the defective bearings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    3
    Citations
    NaN
    KQI
    []