Effect of strontium and zirconium doped barium cerate on the performance of proton ceramic electrolyser cell for syngas production from carbon dioxide and steam

2018 
Abstract Syngas has been produced from carbon dioxide (CO 2 ) and steam using a proton ceramic electrolyser cell. Proton-conducting electrolytes which exhibit high conductivity can suffer from low chemical stability. In this study, to optimize both proton conductivity and chemical stability, barium cerate and doped barium cerate are synthesized using solid state reaction method: BaCeO 3 (BC), Ba 0.6 Sr 0.4 CeO 3-α (BSC), Ba 0.6 Sr 0.4 Ce 0.9 Y 0.1 O 3-α (BSCY), and BaCe 0.6 Zr 0.4 O 3-α (BCZ). The BC, BSC, and BSCY are calcined at 1100 °C for 2 h and BCZ is calcined at 1300 °C for 12 h, respectively. All samples exhibit 100% perovskite and crystallite sizes equal 37.05, 28.46, 23.65 and 17.46 nm for BC, BSC, BSCY and BCZ, respectively. Proton conductivity during steam electrolysis as well as catalytic activity toward the reverse water gas shift reaction (RWGS) is tested between 400 and 800 °C. The conductivity increases with temperature and the values of activation energy of conduction are 64.69, 100.80, 103.78 and 108.12 kJ mol −1 for BSCY, BC, BSC, and BCZ, respectively. It is found that although BCZ exhibits relatively low conductivity, the material provides the highest CO yield at 550–800 °C, followed by BSCY, BSC, and BC, correlating to the crystallite size and BET surface area of the samples. Catalytic activity toward RWGS of composited Cu and electrolytes is also measured. Additional Cu (60 wt%) significantly increases catalytic activity. The CO yield increases from 3.01% (BCZ) to 43.60% (Cu/BCZ) at 600 °C and CO can be produced at temperature below 400 °C. There is no impurity phase detected in BCZ sample after exposure to CO 2 -containing gas mixture (600 °C for 5 h) while CeO 2 phase is detected in BSC and BSCY and both CeO 2 and BaO are observed in BC sample.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []